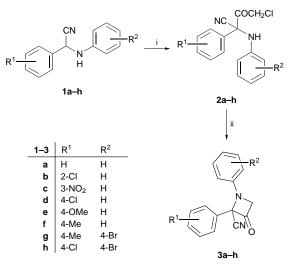
Novel Tri-*n*-butyltin Hydride–Azoisobutyronitrile-induced Intramolecular Ring-closure Reaction: a Convenient Synthesis of Substituted Azetidin-3-ones†,‡


Abhijit Roy Chowdhury, Versha V. Kumar, Raja Roy and A. P. Bhaduri*

Division of Medicinal Chemistry, Central Drug Research Institute, Lucknow 226 001, India

Tri-*n*-butyltin hydride–azoisobutyronitrile-mediated intramolecular ring-closure reactions yield 2-cyano-1,2-di(phenyl or substituted phenyl)azetidin-3-ones; ¹⁵N NMR studies support the assigned structures.

Convenient methods for synthesising four-membered nitrogen-containing heterocycles are extremely limited.¹⁻⁵ During the course of our studies on intramolecular ring-closure reactions induced by tri-*n*-butyltin hydride (TBTH)–azoisobutyronitrile (AIBN), novel intramolecular ring closures of α -anilino- α -(chloromethylcarbonyl)phenylacetonitriles leading to the formation of azetidin-3-one derivatives were observed. The details of this first report are presented here.

Addition of HCN to the appropriate Schiff's base^{6,7} yielded compounds **1a-h** which reacted with chloroacetyl chloride in the presence of sodium hydrogen carbonate to yield the *C*-acylated products **2a-h** instead of *N*-acetylated products. The *C*-acylation was confirmed on the basis of the disappearance of the methine proton and the presence of a D₂Oexchangeable NH proton between $\delta_{\rm H}$ 6.51 and 6.52 in the ¹H NMR spectra. Reactions of **2a-h** with TBTH in the presence of AIBN gave 2-cyano-1,2-di(phenyl or substituted phenyl)azetidin-3-ones **3a-h** in excellent yields (72–77%) (Scheme 1). Attempted reactions of compounds **2a-h** with TBTH alone did not yield **3a-h**.

Scheme 1 Reagents and conditions: i, CICOCH₂CI, NaHCO₃, CHCI₃, room temp., 8–10 h; ii, TBTH, AIBN, anhydrous THF, 65 °C, 12–14 h

The N—CH₂ linkage in these four-membered heterocycles was established on the basis of ¹⁵N NMR studies carried out with **3d** as the model compound. The nitrogen of the nitrile group appeared at δ_N 149.8 and the trisubstituted ring nitrogen showed up as a broad triplet at δ_N 127.2. The latter in a ¹⁵N inverse-gated experiment appeared as a singlet, indicat-

ing ${}^{2}J_{\rm NH}$ long-range coupling with the methylene protons.^{8,9} Long-range HMBC (heteronuclear multiple bond correlation spectroscopy) experiments¹⁰ showed that the carbonyl carbon was coupled with the methylene protons. The presence of the methylene protons adjacent to the trisubstituted nitrogen was further reinforced by phase-sensitive ROESY (rotating-frame Overhauser effect spectroscopy) experiments¹¹ in which the CH₂ protons between $\delta_{\rm H}$ 3.4 and 4.2 gave NOE cross-peaks with the *ortho* protons of the phenyl group attached to the N-1 position. The outcome of all the spectroscopic results, therefore, unambiguously proves the structure of the azetidinones as **3a–h**.

In conclusion, the present method provides a more convenient route to substituted azetidin-3-ones compared with existing ones. Studies are under way to elucidate the mechanism of this unusual ring-closure reaction.

Experimental

Melting points were determined on a hot-stage apparatus and are uncorrected. IR spectra were recorded on Beckmann Acculab-10 or Perkin-Elmer 881 spectrophotometers. ¹H NMR spectra, ¹⁵N NMR spectra and related 2D-NMR experiments were carried out on Bruker 400 FT NMR and Bruker Avance DRX 300 spectrometers. EI mass spectra were recorded on a JEOL JMS-D-300 spectrometer. Elemental analyses were carried out on a Carlo-Erba EA 1108 elemental analyser. Reactions were monitored by TLC on silica gel 60 (E. Merck) of 0.25 mm thickness. Column chromatography carried on Merck silica gel (70–230 mesh).

 α -Anilino- α -(chloromethylcarbonyl)phenylacetonitriles: General *Procedure.*—To a solution of 1a-h (2 mmol) in CHCl₃ (25 ml) were added NaHCO₃ (0.168 g, 3 mmol) and chloroacetyl chloride (0.239ml, 2 mmol) in CHCl₃ (10 ml) under stirring. The reaction mixture was allowed to stir for 8-10 h. Then, the reaction mixture was neutralised with saturated aqueous NaHCO3 followed by separation of the organic layer which was washed with brine (25 ml) and dried over anhydrous Na₂SO₄. Evaporation of the solvent led to a crude solid which was recrystallised in EtOH to afford products **2a−h.** 2a: colourless *crystalised* in EtOH to anord products **2a−h.** 2a: colourless *crystals*, mp 88 °C (from EtOH), 71% yield (Found: C, 67.58; H, 4.73; N, 9.91. $C_{16}H_{13}CIN_2O$ requires C, 67.49; H, 4.60; N, 9.80%); v_{max} (KBr)/cm⁻¹ 1685 (C=O), 2252 (C≡N), 3122 (NH); δ_{H} (400 MHz; CDCl₃) 3.8 (2 H, s, CH₂), 6.56 (1 H, br, NH, D₂O exchangeable), 7.08 (1 H, m, ArH), 7.30 (4 H, m, ArH), 7.42 (4 H, d, J 9 Hz, ArH), 7.52 (1 H, m, ArH); *m*/z (EI-MS) 284 (M⁺, 2.4%), 248 (34.6). **2b**: colourless *crystals*, mp 121 °C (from EtOH), 72.5% yield (Found: C, 60.46; H, 3.74; N, 8.72. C₁₆H₁₂Cl₂N₂O requires C, 60.20; H, 3.78; N, 8.77%); v_{max} (KBr)/ cm⁻¹ 1670 (C=O), 2265 (C=N), 3085 (NH); δ_{H} (400 MHz, CD C) (C=O) (C=O) (CHOR) (CHOR) CDCl₃) 3.83 (2 H, s, CH₂), 6.51 (1 H, br, NH, D₂O exchangeable), 7.06 (1 H, m, ArH), 7.14 (2 H, d, J 9 Hz, ArH), 7.31 (4 H, m, ArH), (1 H, br, NH, D₂O exchangeable), 6.85 (1 H, s, ArH), 7.18 (4 H, s, ÀrH), 7.35 (1 H, m, ArH), 7.56 (2 H, d, J 9 Hz, ArH), 8.18 (1 H, s, ArH); m/z (EI-MS) 329 (M⁺, 4.9%), 253 (100.0). 2d: colourless $r_{max}(\text{KBr})/\text{cm}^{-1}$ 1668 (C=O), 2251 (C=N), 3180 (NH); δ_{H} (400 V_{max} (KB1)/Clil 1008 (C=O), 2231 (C=1), 5160 (1(1), 6_H (100 MHz, CDCl₃) 3.78 (2 H, s, CH₂), 6.53 (1 H, br, NH, D₂O exchangeable), 7.10 (4 H, s, ArH), 7.25 (2 H, d, J 9 Hz, ArH), 7.34 (2 H, d, J 9 Hz, ArH); m/z (EI-MS) 319 (M⁺, 2.3%), 283 (39.0). **2e**: colourless *crystals*, mp 88 °C (from EtOH), 71.5% yield (Found: C, 64.72;

J. Chem. Research (S), 1997, 254–255†

^{*}To receive any correspondence (*e-mail:* root%cdrilk@sirnetd. ernet.in).

[†]This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (*S*), 1997, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (*M*). ‡CDRI Communication No. 5549.

H, 4.93; N, 8.75. C₁₇H₁₅ClN₂O₂ requires C, 64.87; H, 4.80; N, 8.89%; v_{max} (KBr)/cm⁻¹ 1666 (C=O), 2334 (C=N), 3016 (NH); $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.82 (5 H, q, J 14 Hz, OCH₃ and CH₂), 6.48 (1 H, br, NH, D₂O exchangeable), 7.26 (4 H, m, ArH), 7.33 (4 H, m, ArH), 7.40 (1 H, q, J 18 Hz, ArH); m/z (EI-MS) 314 (M⁺, 21.0%), 279 (30.1). 2f: colourless crystals, mp 92 °C (from EtOH), 74.5% yield (Found: C, 68.60; H, 5.18; N, 9.30 C₁₇H₁₅ClN₂O) requires C, 68.34; H, 5.06; N, 9.37%); v_{max} (KBr)/cm⁻¹ 1670 (C=O), 2247 (C=N), 3120 (NH); δ_{H} (400 MHz, CDCl₃) 2.35 (3 H, s, CH₃), 3.78 (2 H, s, CH₂), 6.48 (1 H, br, NH, D₂O exchange-(5 H, 3, CH₃), 5.16 (2 H, 4, *J* 9 Hz, ArH), 7.09 (1 H, m, ArH), 7.18 (4 H, m, ArH), 7.24 (2 H, d, *J* 9 Hz, ArH); m/z (EI-MS) 298 (M⁺, 3.8%), 262 (32.9). **2g**: colourless *crystals*, mp 129 °C (from EtOH), 70% yield (Found: C, 53.93; H, 3.83; N, 7.17. $C_{17}H_{14}BrClN_2O$ requires C, 54.06; H, 3.73; N, 7.41%); v_{max} (KBr)/cm⁻¹ 1680 (C=O), 2258 (C=N), 3120 (NH); δ_{H} (400 MHz, CDCl₃) 2.34 (3 H, s, CH₃), 3.78 (2 H, s, CH₂), 6.52 (1 H, br, NH, D₂O exchangeable), 6.79 (2 H, d, J 9 Hz, ArH), 7.12 (2 H, m, ArH), 7.18 (2 H, d, J 9 Hz, ArH), 7.20 (2 H, d, J 9 Hz, ArH); *m*/z (EI-MS) 377 (M⁺, 16.3%), 343 (23.1). **2h**: colourless *crystals*, mp 180 °C (from EtOH), 71% yield (Found: C, 48.51; H, 2.47; N, 7.18. $C_{16}H_{11}BrCl_2N_2O$ requires C, 48.27; H, 2.78; N, 7.03%); v_{max} (KBr)/cm⁻¹ 1666 (C=O), 2280 (C=N), 3322 (NH); δ_{H} (400 MHz, CDCl₃) 3.75 (2 H, s, CH₂), 6.52 (1 H, br, NH, D₂O exchangeable), 7.14 (1 H, m, ArH), 7.19 (2 H, d, *J* 9 Hz, ArH), 7.21 (2 H, d, *J* 9 Hz, ArH); *m*/z (EI-MS) 397 (M⁺, 12.1%), 249 (34.3).

Azetidin-3-ones: Typical Procedure.- To a solution of 2a-h (2 mmol) in anhydrous THF (25 ml) was added a catalytic amount of AIBN and the reaction mixture was allowed to stir at 65 °C for 30 min under N2 atmosphere. Thereafter, the reaction mixture was cooled to room temperature (25 °C), followed by the addition of 0.87 ml (3.0 mmol) of TBTH in anhydrous THF and then refluxing at 65 °C for the next 12-14 h under a N2 atmosphere. The excess of solvent was distilled off in vacuo and the residue was extracted with EtOAc $(3 \times 20 \text{ ml})$. Usual work-up of the organic layer furnished an oily residue which was purified by column chromatography. Elution with hexane–CHCl₃ (75:25, v/v) furnished a crude solid which was recrystallised in MeOH–EtOAc to afford compounds **3a-h. 3a:** colourless *crystalls*, mp 79 °C (from MeOH–EtOAc), 77.2% yield (Found: 77.16; H, 4.97; N, 11.69. $C_{16}H_{12}N_2O$ requires C, 77.40; H, 4.87; N, 11.28%); v_{max} (KBr)/cm⁻¹ 1770 (C=O), 2264 (C=N); δ_H (400 MHz, CDCl₃) 3.35 (1 H, d, J 15 Hz, H of CH₂), 202 (1 H d, 115 Hz, H of CH₂), 7.12 (1 H = A-H), 7.24 (4 H 3.92 (1 H, d, *J* 15 Hz, H of CH₂), 7.13 (1 H, m, ArH), 7.34 (4 H, m, ArH), 7.48 (4 H, d, *J* 9 Hz, ArH), 7.58 (1 H, m, ArH); *m/z* (EI-MS) 248 (M⁺, 7.8%). **3b**: colourless *crystals*, mp 122 °C (from MeOH– EtOAc), 72.5% yield (Found: C, 68.21; H, 3.57; N, 9.48. C₁₆H₁₁ClN₂O requires C, 67.97; H, 3.92; N, 9.90%); v_{max} (KBr)/ cm⁻¹ 1780 (C=O), 2265 (C=N; δ_{H} (400 MHz, CDCl₃) 3.45 (1 H, d, J 15 Hz, H of CH₂), 4.14 (1 H, d, J 15 Hz, H of CH₂), 7.24 (1 H, m, ArH), 7.28 (1 H, d, J 9 Hz, ArH), 7.41 (4 H, m, ArH), 7.55 (2 H, d, J 9 Hz, ArH), 7.58 (1 H, d, J 9 Hz, ArH); m/z (EI-MS) 283 (M⁺, 19.5%), 214 (21.1). **3c**: yellow *crystals*, mp 152 °C (from MeOH– EtOAc), 77.44% yield (Found: C, 65.82; H, 3.96; N, 14.71, EtOAC), 7/,44% yield (Found: C, 65.82; H, 3.96; N, 14.71. C₁₆H₁₁N₃O₃ requires C, 65.52; H, 3.78; N, 14.32%); v_{max} (KBr)/cm⁻¹ 1782 (C=O), 2270 (C=N); $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.45 (1 H, d, J 15 Hz, H of CH₂), 4.12 (1 H, d, J 15 Hz, H of CH₂), 7.18 (1 H, m, ArH), 7.38 (4 H, s, ArH), 7.71 (1 H, m, ArH), 7.35 (1 H, d, J 9 Hz, ArH), 7.95 (1 H, d, J 9 Hz, ArH), 8.51 (1 H, s, ArH); m/z (EI-MS) 293 (M⁺, 35.5%). **3d**: colourless *crystals*, mp 96 °C (from MeOH– EtOAC), 75.2% yield (Found: C, 67.78; H, 4.23; N, 9.76. C₁₆H₁₁ClN₂O requires C, 67.97; H, 3.92; N, 9.90%); v_{max} (KBr)/

 cm^{-1} 1768 (C=O), 2284 (C=N); δ_{H} (400 MHz, CDCl₃) 3.38 (1 H, d, J 15 Hz, H of CH₂), 3.02 (1 H, d, J 15 Hz, J 15 Hz, H of CH₂), 7.16 (1 H, m, ArH), 7.34 (4 H, s, ArH), 7.45 (2 H, d, J 9 Hz, ArH), 7.53 (1 H, m, ArH), 7.34 (4 H, s, ArH), 7.45 (2 H, d, J 9 Hz, ArH), 7.53 (2 H, d, J 9 Hz, ArH); m/z (EI-MS) 282 (M⁺, 6.7%), 280 (15.1). **3e**: colourless *crystals*, mp 86 °C (from MeOH–EtOAc), 74.56% yield (Found: C, 73.40; H, 4.99; N, 10.50. C₁₇H₁₄N₂O₂ requires C, 73.36; H, 5.07; N, 10.06%); ν_{max} (KBr)/cm⁻¹ 1780 (C=O), 2265 (C=N); $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.32 (1 H, d, J 15 Hz, H of CH₂), 3.75 (3 H, s, OCH₃), 3.92 (1 H, d, J 15 Hz, H of CH₂), 7.14 (1 H, s, ArH), 7.32 (4 H, s, ArH), 7.48 (2 H, d, J 9 Hz, ArH), 7.54 (2 H, d, J 9 Hz, ArH); m/z (ELMS) 278 (M⁺ 5 1%) 210 (10 7) **3f** colourless *crystals*, mp (4 H, s, ArH), 7.48 (2 H, d, J 9 Hz, ArH), 7.54 (2 H, d, J 9 Hz, ArH); m/z (EI-MS) 278 (M⁺, 5.1%), 210 (10.7). **3f**: colourless *crystals*, mp 91 °C (from MeOH–EtOAc), 74.5% yield (Found: C, 77.90; H, 5.22; N, 10.52. C₁₇H₁₄N₂O requires C, 77.84; H, 5.36; N, 10.67%); v_{max} (KBr)/cm⁻¹ 1775 (C=O), 2262 (C=N); $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.37 (3 H, s, CH₃), 3.38 (1 H, d, J 15 Hz, H of CH₂), 3.98 (1 H, d, J 15 Hz, H of CH₂), 7.14 (1 H, m, ArH), 7.28 (4 H, q, J 9 Hz, ArH), 7.25 (2 H d, J 0 Hz, ArH), 7.47 (2 H d, J 0 Hz, ArH), m/z (EI MS) 7.35 (2 H, d, J 9 Hz, ArH), 7.47 (2 H, d, J 9 Hz, ArH); m/z (EI-MS) 262 (M⁺, 16.9%), 144 (25.8). **3g**: colourless *crystals*, mp 78 °C (from MeOH–EtOAc), 76.87% yield (Found: C, 59.84; H, 4.70; N, 9.80. C₁₇H₁₃BrN₂O requires C, 59.84; H, 3.84; N, 8.20%); v_{max} (KBr)/cm⁻¹ 1765 (C=O), 2271 (C=N); δ_{H} (400 MHz, CDCl₃) 3.38 (1 H, d, J 15 Hz, H of CH₂), 3.82 (3 H, s, CH₃), 3.91 (1 H, d, J 15 Hz, H of CH₂), 3.82 (3 H, s, CH₃), 3.91 (1 H, d, J 15 Hz, H of CH₂), 6.98 (2 H, d, J 9 Hz, ArH), 7.21 (2 H, m, ArH), 7.38 (2 H, d, J 9 Hz, ArH), 7.40 (2 H, d, J 9 Hz, ArH); *m*/z (EI-MS) 341 (M⁺, 1.8%), 314 (14.1). **3h**: yellow *crystals*, mp 81 °C (from MeOH–EtOAc), 74.84% yield (Found: C, 53.38; H, 3.09; N, 7.59. C₁₆H₁₀BrCIN₂O requires C, 53.14; H, 2.78; N, 7.74%); v_{max} (KBr)/cm⁻¹ 1772 (C=O), 2265 (C=N); δ_{H} (400 MHz, CDCl₃) 3.38 (1 H, d, J 15 Hz, H of CH₂), 3.81 (1 H, d, J 15 Hz, H of CH₂), 6.95 (2 H, d, J 9 Hz, ArH), 7.23 (2 H, m, ArH), 7.43 (4 H, q, J 9 Hz, ArH); *m*/z (EI-MS) 361 (M⁺, 4.1%). 262 (M⁺, 16.9%), 144 (25.8). 3g: colourless crystals, mp 78 °C (from (EI-MS) 361 (M⁺, 4.1%).

Financial assistance (to A. R. C. and V. V. K.) from CSIR, New Delhi, is gratefully acknowledged.

Received, 17th October 1997; Accepted, 14th March 1997 Paper E/6/07079E

References

- 1 S. S. Chatterjee and A. Shoeb, Synthesis, 1973, 153.
- 2 S. S. Chatterjee, Tetrahedron Lett., 1972, 50, 5063.
- A. Morimoto, T. Okutari and K. Masuda, Chem. Pharm. Bull., 3 1973. 21. 228
- 4 H. Baumann and R. O. Duthaler, Helv. Chim. Acta, 1988, 71, 1035
- 5 J. Podlech and D. Seebach, Helv. Chim. Acta, 1995, 78, 1238.
- 6 N. Singh and S. Mohna, J. Chem. Soc., Chem. Commun., 1969,
- 868. 7 J. S. Sandhu, S. D. Sethi and S. Mohan, J. Indian Chem. Soc., 1971, 48, 89.
- 8 K. L. Williamson and J. D. Roberts, J. Am. Chem. Soc., 1976, 98, 5082
- 9 J. W. Paschel, D. E. Dorman, P. R. Srinivasan and R. L. Lichter,
- J. Org. Chem., 1978, **43**, 2013. 10 A. Bax and M. F. Summers, J. Am. Chem. Soc., 1986, **108**, 2093.
- 11 A. Bax and G. D. Davis, J. Magn. Reson., 1985, 63, 207.